Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 143: 189-200, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38644016

ABSTRACT

Microbial activity and interaction are the important driving factors in the start-up phase of food waste composting at low temperature. The aim of this study was to explore the effect of inoculating Bacillus licheniformis on the degradation of organic components and the potential microbe-driven mechanism from the aspects of organic matter degradation, enzyme activity, microbial community interaction, and microbial metabolic function. The results showed that after inoculating B. licheniformis, temperature increased to 47.8°C on day 2, and the degradation of readily degraded carbohydrates (RDC) increased by 31.2%, and the bioheat production increased by 16.5%. There was an obvious enhancement of extracellular enzymes activities after inoculation, especially amylase activity, which increased by 7.68 times on day 4. The inoculated B. licheniformis colonized in composting as key genus in the start-up phase. Modular network analysis and Mantel test indicated that inoculation drove the cooperation between microbial network modules who were responsible for various organic components (RDC, lipid, protein, and lignocellulose) degradation in the start-up phase. Metabolic function prediction suggested that carbohydrate metabolisms including starch and sucrose metabolism, glycolysis / gluconeogenesis, pyruvate metabolism, etc., were improved by increasing the abundance of related functional genes after inoculation. In conclusion, inoculating B. licheniformis accelerated organic degradation by driving the cooperation between microbial network modules and enhancing microbial metabolism in the start-up phase of composting.


Subject(s)
Bacillus licheniformis , Composting , Bacillus licheniformis/metabolism , Composting/methods , Soil Microbiology , Biodegradation, Environmental , Microbiota/physiology , Cold Temperature
2.
Bioresour Technol ; 390: 129870, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839642

ABSTRACT

This study aimed to explore the impact of co-inoculating phosphate-solubilizing bacteria (PSB) and phosphate accumulating bacteria (PAB) on phosphorus forms transformation, microbial biomass phosphorus (MBP) and polyphosphate (Poly-P) accumulation, bacterial community composition in composting, using high throughput sequencing, PICRUSt 2, network analysis, structural equation model (SEM) and random forest (RF) analysis. The results demonstrated PSB-PAB co-inoculation (T1) reduced Olsen-P content (1.4 g) but had higher levels of MBP (74.2 mg/kg) and Poly-P (419 A.U.) compared to PSB-only (T0). The mantel test revealed a significantly positive correlation between bacterial diversity and both bioavailable P and MBP. Halocella was identified as a key genus related to Poly-P synthesis by network analysis. SEM and RF analysis showed that pH and bacterial community had the most influence on Poly-P synthesis, and PICRUSt 2 analysis revealed inoculation of PAB increased ppk gene abundance in T1. Thus, PSB-PAB co-inoculation provides a new idea for phosphorus management.


Subject(s)
Composting , Phosphates , Phosphates/chemistry , Phosphorus/analysis , Soil/chemistry , Bacteria/genetics , Polyphosphates
3.
Bioresour Technol ; 337: 125411, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34153865

ABSTRACT

Composting is widely used as an easily operated and economical method to manage organic wastes. However, the long residence time of composting impedes the recycling nutrients from large amounts of organic wastes produced every day. In this study, the intelligent biodrying + continuous dynamic trough (IB + CDT) was created and used in China's first urban and rural organic waste treatment and utilization demonstration center in Suzhou city. Results showed that IB + CDT composting had higher temperature, more reduction of moisture than windrow composting, enhancing 40% of composting efficiency. Primary fermentation of the IB + CDT composting in the indoor conditions could achieve the harmless treatment (GI > 80%) of compost within 12 days. The IB + CDT composting product enhanced 17% soil organic matter and 11% available nitrogen. The IB + CDT composting mode could earn 57.6 USD/ton by recycling organic waste and producing organic fertilizer, leading to a sustainable and profitable mode.


Subject(s)
Composting , Cities , Nutrients , Recycling , Soil , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...